Finished Foundation and Floor Framing Oh-Ohs

The foundation for the main house is complete.  Time to start framing and sheathing the main floor deck while we wait for Shawn Woods to excavate the footings for the attached slab-grade garage and three season room.

There’s not a whole lot of “greenness” of “Passive Houseness” to talk about in floor framing.  But it’s all part of the construction process and hey, we need a main floor to walk on.

The framers – Jason, Travis, Jimmy and John began building the main floor deck by applying a capillary break on the top of the concrete in the Logix ICF foundation to stop any moisture from wicking up into the floor framing.

They then compared the “as is” foundation to the architectural plans.  It’s best to start framing the deck on a level and square foundation.  That’s especially true for EdgewaterHaus, as the main floor walls and roof trusses are already built in a factory to the specifications of the architectural plans;  it’s too late to make any dimensional accommodations to the walls or trusses.  A small 1/8″ gap at the bottom of the wall on a problematic foundation can become a gaping 1/2″ opening ten feet higher at the top of the wall, complicating the placement of adjacent wall panels and the trusses.  If this were a typical home, such gaps would be shimmed and covered by exterior and interior finishes; no one would know the difference. Not us.  Gaps complicate air sealing the building envelop.  The blower door and thermal imagery will reveal these “thermal holes.”  We need an exceptionally tight, well assembled building envelope to meet the Passive House standard.

So if there’s any shimming, it’s best to do it at one place – the bottom plate of the wall.  Jason used a laser to methodically check the elevation of the foundation at each point near the wall anchors and measured wall dimensions against the specifications of the plan.


  • Elevations.  Using the highest point on the foundation as a reference, Jason found two areas with notable variation:  the west side of the bedroom 3 foundation was 1/2″ low, and the south side of the three-season room foundation was 3/4″ low.

    Shimming the bottom plate to level

  • Square:  using the south facade as a reference line, the north wing of the building foundation strays from the 60 degree design by up to five degrees.  That’s not much, except when the wall extends 50′!  The east and west foundation walls of the north wing are not parallel to each other; the foundation is 1 3/4″ too wide where the garage wall meets the house, expanding to 2 1/2″ too wide at the far, north side of the garage.


Now some may say that’s just another day in the life of a framer to resolve real world variation in the foundation.

Vertical and horizontal separation block separation

Perhaps.  But I expected better results with the Logix foundation.  We had surveyors precisely mark the outside corners of the Logix blocks on the footers.  And the snug fit of the many male/female vertical connections points in the Logix block adds confidence.  I’m not sure if the vertical and horizontal variance lies in how the blocks were stacked and braced, or the shifting of some block while the concrete was poured into the Logix cavity, or both.  

Several areas of Logix did noticeably lift during the pour, then seemed to settle back into

Uplift reveals tabs at the top of the block

place as more concrete was poured.  Yet in looking at the completed foundation, there are clearly vertical and horizontal gaps ranging from 1/8″ to 3/8″ in many of the Logix blocks.  The worst areas are the top two courses of block, and the very worst is the east section of the wall with the 60 degree angle in the foundation.  The vertical supports did not extend to the top two courses of the Logix, and that not each course of block was screwed into the vertical supports to prevent uplift.  Concrete exerts enormous pressure when it is being poured.   Could better bracing and checking for plumb to the bottom course have improved the results?

Out of plumb at the top course of block

The framers spent several man days adjusting the horizontal and vertical position of the base plates on the foundation to bring the floor framing back to the plan specifications.  That meant moving the bottom plate inward or outward on the foundation, and shimming it upwards by as much as 3/4.”  Jason aimed to have dimensions and elevations to a +/- 1/8″ tolerance across the entire foundation.

The framers next cut, placed and braced the seven concrete filled lally columns in the basement, secured two LVL beams atop several of the lallys, and a delivery truck boomed two beefy steel I-beams into place atop the remaining lally columns.

Steel beams and LVLs support the main floor deck


One of the steel I-beams had insufficient bearing on the foundation.  That was quickly solved by placing another lally column on the footer where that steel beam meets the foundation.

Our floor was engineered by Coastal Forest Products.  The framers started to install the I-beams and floor deck along the main axis of the house.


Coastal delivered the wrong mix of hangers:  there were too many 3 1/2″ wide hangers and not enough 2 1/2″ wide hangers; there were not enough top mount hangers for use on the steel beams; we were also short on a section of rim board and some sheathing.

That was solved the next day.  Floor framing proceeded along the main axis of the house.

The crew then started the layout for the hangers on the north wing, the one with the 60 degree angle.


We had received 45 degree hangers instead of the 60 degree hangers called out in the design.

The Coastal rep came on site, confirming the shortage.  Sixty degree hangers are a special order item.  He promised quick delivery, especially if they had some in stock.

And so we await delivery of the 60 degree hangers to complete the main floor deck.

Meanwhile, the installed deck is rock solid.  There’s absolutely no bounce on the floor, even before we pour the 1 1/2″ concrete.  The meticulous care to square and level the foundation bodes well for installing the factory built panels.

This entry was posted in Green Building and tagged , . Bookmark the permalink.

4 Responses to Finished Foundation and Floor Framing Oh-Ohs

  1. Peter says:

    I’m sorry to hear about all your problems. This is without a doubt the fault of the ICF contractor and the Logix rep. ICF is NOT a DIY building material, that fact has been proven many times over by all the problems that will occur on a job site by inexperienced crews.

    I hope that the problems will be few and that other problems don’t emerge as time goes on. Internal vibrating the ICF wall is a must. The wood block and hammer method is considered a joke and a completely ineffective method of consolidating concrete. There will be a lot of external pressure on those below grade walls. Any voids can result in a collapsed wall system causing injury or death.

    I hope the rest of your project goes better. The job that ICF crew did gives ICF a bad name.

    • Roger says:

      Peter, I recall our builder discussing how the foundation contractor was going to proceed. They talked about a web search that had mixed views of of vibrating for a 6″ thick wall with lots of steel inside. I accepted their approach. In hindsight, the results speak volumes.

  2. Peter says:


    Here is a link to the ICF Magazine article which explains vibrating ICF walls for proper consolidation:

    Here is the PDF from an in-depth study from the Portland Cement Association:

    In the end it was determined by the studies and it is now industry standard to use internal mechanical vibration methods via a pencil vibrator to eliminate voids. The block and hammer method in all honesty is a waste of time. Rebar shakers also work but the rebar must be all tied together properly to work.

    I would pick some spots on the ICF wall and remove the foam to check for voids. Especially in corners and lintel areas. You can always go back and spray foam the area you removed.

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>